UNCLASSIFIED

\o 270 959

Reproduced
by lhe

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
* FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



NOTICE: When govermment or other dravings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
goverument procurement operation, the U. S.
Tovernmernt theredby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or io any wvay
supplied the said dravings, specifications, or other
data {s not to be regarded by implication or other-
vise as {n any sanner licensing the holder or any
cther person or corporation, or conveying any rights
or permission tc manufacture, uge or sell any
patented f{nvention that may in any wvay dbe related
thereto.



«~

XEROX (/)
-3 L

7
OPERATIONS ANALYSIS

PAPE .
cé/[R‘No’f

095
MMMMannns

THE APPLICATION OF STATISTICAL
DECISION THEORY TO A MISSILE
TESTING PROBLEM

(67 659

s FILE COPY
=
WALTER L. DEEMER Return to
2 Chief, Systems Analysis Team ASTIA
Operations Analysis Office L
% and + « « DECEMBER
% JOHN P. MAYBERRY
% Operations Analyst, Hq USAF
7
.
ASTIA |
TG CTTHA Uy el n
z FE3 5 1352
Z ’
% TIPDR [
Opef%om Analysis

Office, Vice Chief of Staff
Headquarters, United States Air Force
Washington 25, D. C.

\\\

DI
Zamumm

\




The Application of Statistical
Declslion Theory to a Misslle Testing Problem*

ABSTRACT

Experiments are planned, performed, and analyzed for two main
purposes: first, to discover facts; and second, to use those facts
in making decisions.

Classical statistics typically considers these two purposes

separately, with special emphasils on discovering (or estimating) the
facts.

Statistical decislon theory, on the other hand, considers each
problem as a unified whole, so that the experiment and 1ts analyslis
are greatly influenced (a) by the decislon which 1s to be made, and
(b) by the cost of the experiment itself.

As the price for treating more of the important factors explicit-
.ly, statistical declslon theory requires more information than the
classical methods. On the other hand, problems can be treated which
are inaccesslble to the classical methods, for example: "Shall we
do any testing at all?"

*This paper 1s a revised and expanded version of a paper delivered
at the World-Wide Operations Analysis Technical Conference - 12-13
October 1961
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l., Introduction

In thls paper, we wish to describe two approaches, each applicable
to a wide varlety of statlistical problems. For expository purposes,
we have chosen to arply both these approaches -- which we call, respec-
tively, the classical approach and the statistical decision theory
approach -- to a specific problem. In order to clarify the principles
which we are presenting, we have sacrificed the realism of the example
by making several simplifying assumptions.* Of course, both the
methods discussed could be applied without making these simplifying
assumptions, just as they could be applied to a wide variety of other
real problems.

The central ideas of each of these approaches can be distinguished
as follows:

a. Classical Statistics:
"What are the facta?"

b, Statlstical Decision Theory:
"What shall we do?"

Because of the difference 1in these central ideas, there 1s a great
difference between the two approaches in the parts of the total pro-
blem which are included in the mathematical model. Statistical
declsion theory, which focuses attention on the pragmatic question
"What shall we do?", takes into conslderation factors which are typi-
cally excluded from the classical approach.

*Two specific examples of this simplification: (a) We assume that
all targets have the same value to the attacker and that all are
equally hard; (b) we treat reliability alone, whereas real problems
require that reliabllity and accuracy be treated together in the
same model.



After reviewing both approaches, we will 1llustrate them by apply-
ing them to a specific example. The example concerns the question,
"How many missiles should be expended in operational test firings?"

It 1s important to realize that we are not concerned with R and D test
firings, whose primary purpose is to improve missile design and reli-
abllity, but only with the later‘firings from operationally configured
sites. The primary purposes of those later firings are (a) to evalu-
ate missile reliability, and (b) to provide guidance for the allocation
of missiles to targets.

2. Classlical Statistics

Classlical statistlcs 1s concerned with the theory of how to use
the results of an experiment (a) to test hypotheses, or (b) to esti-
mate parameters. (A hypothesis might be any statement whose truth is
unknown, such as "Missile reliabllity is greater than 50%." A para-
meter might be any varlable whose true value 1s unknown, such as the
reliability of our missiles.)

A parameter estimate may be either (1) a point estimate, or (2)
an Interval estimate. (A point estimate is a statement such as "Based
on these test results, reliability 1s 0.63." An interval estimate is
a statement of the form "Based on these test results, we can say with
80% confildence that the relilability is between 0.53 and 0.71.") The
latter type of estimate tells us how trustworthy the specific numbers
may be.

a. Theory of Estimation.

Classical statlistics emphasizes the development of theory
to gulde one 1n choosing functions of the sample observations for
testing hypotheses, and for point and interval estimation. Not
always ignored, but usually omitted from explicit treatment in the
mathematical model, are conslderations of testing costs and the loss



assoclated with making a wrong estimate. There 18 no suggestion in-
tended here that classical statistics could not take these things
into account, implicitly or even explicitly; however, it 1is not
usually done. For example, a brief search through several standard
statistics texts reveals no mention at all of the cost of testing,
except by implication in the discussion of sequential testing (since
one of the stated advantages of sequentlal testing 1s that it de-
creases the average number of items tested).

b. Design of Experiments

We should also remark here that the large body of litera-
ture on the "design of experiments" does not (in general) refer ex-
plicitly to the cost of experimentation, but asks questions like "How
much testing 1s necessary to achieve the precision and confidence re-
quired?” Of course, if the answer to this question implies an un-
reasonably costly experiment, the words "necessary" and "required"
will be redeflned and the question will be asked again. In this
way the costs do have some effect on the classically-designed experl-
ment, but in a subJective and imprecise way. In fact, most of the
"design of experiments" 1is directed to the very different problem of
avolding undesired interactlons between the things belng measured or
tested and random or irrelevant disturbances.

3. Statistical Declsion Theory

Statistical decislion theory, on the other hand, uses the same
mathematical theory of probability which underlies classical statis-
tics, but increases the scope of the mathematical model to include
explicit consideration of (a) cost of testing, (b) decisions which
may be influenced by test results, (c) cost of making the wrong
decision, and (d) Jjudgments on the likelihood of the various results
(prior probabilities). One penalty for increasing the scope of the
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model 1s, of course, increased complexity. Another fact, often re-
garded as a penalty, is that statistical decision theory gives re-~
sults which depend explicitly on the above four factors, so that

the applicability of the results is usually limited to the one speci-
fic problem considered. However, we belleve that those factors logi-
cally should have an effect on the amount of testing, and on the
actions taken after observing the results, so that the generality
obtained by other methods may be 1llusory.

The question, as we see 1t, 1s simply whether those four
factors should be taken into account by explicitly including them
in the model, or whether they should be taken 1into account by rely-
ing on the subjective Judgment of the statistician. In the case
of an experienced statistician, whose experience 1s relevant to the
problem at hand, the classical approach wlll be more convenlent;
however, we can see no method of determing whether the statistician's
experlience 1is in fact relevant except by comparing his opinions with
obJective calculatlions which take the additional factors into account
explicitly. For most operations analysis problems, and for our exam-
ple in particular, the additional information needed for statistical
decision theory can be made available by reasonable assumptions.

4, Our Specific Missile Testing Problem

The missile testing problem has two parts: first, "How many
missiles should be fired in an operational test program?" and
second, "How should the results of the test progrum be used as a
guide 1in targeting?"

a. The Classical-Statistical Approach
The question of how many misslles to fire can be partially
answered by the methods of classical statistics. Before explaining
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the method used, we will describe how confidence limits for reli-
ability are determined.

(1) Confidence Limits

The confldence limits are based on the mathematical
theory of probability and the binomlal theorem, and are summarized
in graphs of the type shown in Fig. 1.* The true reliability, R,
1s plotted on the ordinate and the observed fraction of successes
in a sample, Ty i1s plotted on the absclssa. Each pair of curves
glves upper confidence limit RU and lower conflidence limit RL’
for a specific sample size (number of missiles tested) and a speci-
fic value of the confidence coefficient C, whose significance will
appear in a moment. One enters the appropriate graph with the ob-
served fraction of successes, Ty draws a vertical line, and then
reads RU from the upper curve and RL from the lower. Since RU and
RL depend on Ty the observed fraction of successes, which 1s of
course a random varliable, they too are random varlables. The curves
are so calculated that, 1f one determines RU and RL in thils way
from each of many experiments, using the same confldence coefficient
C each time, then the random varlables RU and RL will in fact bracket
the true probability R a fraction C of the time.

(2) Choice of Confidence-Coefficient
The experimenter chooses C. Of course, he wants a

large C3 that is, he wants a high probability of coverlng the true
value. He also wants a narrow band for R, that is he wants RU - RL
to be small. But, for a given sample size, as C increases, RU - RL
also increases, (as i1llustrated in Figure 1) so the experimenter
must compromlise. And it 1s here that the first weakness of classical
statistical theory shows up. It offers no guldance as to how to
resolve the conflict between the desire for large C and the desire

for small RU - RL. Published aids for computing RU and RL are
*See Page 32,

6
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typically for C = .8, .9, .95 and .99, and so a value from this

set 1s usually chosen. But the practical implications of the choice
of C and of RU - RL are not ordinarily considered in the classical
theory, and are very difficult even ¢to state correctly.

(3) Cholce of Number Tested

Further, if both large C and small RU - RL are required,
n must be large. Here again, the classical theory provides no
guldance on how to resolve the conflict between the deslre for large
C and small RU - RL on the one hand, and the cost of large n on the
other. Past experience, Judgment, and intultion must be used in
making the cholce. For example, a military headquarters could use
its collective experience and Judgment to select values of C and
RU - RL which were felt to be appropriate when r, = .5. These
chosen values could.be used to determine the number of missiles to be
tested, by means of confidence-1limit curves of the kind shown in Fig.
1. If the values of C and RU - RL that were chosen were appropriate
for the headquarters' needs, then this would be a valid and satis-
factory method of choosling the number to test.

(4) Difficulties in Making Those Choices

However, because the implications of a given cholce are
not obvious, there willl surely be dlsagreement as to the most reason-
able values. This problem is aggravated by the fact that we would
like to employ the Jjudgment of military officers who may not have
statistical training, and who will find it difficult to direct their
Judgment towards the choice of C and RU - RL' It seems that a quanti-
tative assessment of the various choices would have to employ some or
all of the additional information used in statistical decision theory,
and employ it in rather similar ways.
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(5) Using the Classical Estimates
We should also notice here that the second question,

"How to use the results of the test program as a guide in targeting"
is not readlly answered by classical theory, even after the experi-
menter has determined the number of missiles to test. The straight-
forward, uncritical use of an unblased point estimate of the reli-
abllity as 1if it were the true rellability may lead to poor decisions,
particularly if the cost functlon 1s blased. By using Judiciously
bilased point estimates one may be able to compensate for blased cost
functions, but classical theory offers little guldance on how to be
Judicious in this selection. (

b. The Statistical Decision Theory Approach
We shall consider now the statistical decision theory
approach. Since the declsion theory model explicltly includes more
than the classical model, we must gather more information before the
model can be used.

(1) The Set of Possible Actions

For example, we must formulate the purpose of the testing
in such a way that it refers to the actions that may be taken and to
the cholce between them. Thus we cannot simply state that we wish
to "discover the reliability", a suitable statement of the purpose
of the testing would be "we test to determine how to allocate missiles
to a target system." Thus the end result of our %este will be a
choice of one allocation policy. In our example, we are attempting
to choose the number of misslles to be allocated to each target actu-
ally attacked by these missiles, where we have previously decided to
allocate the same number - at most six - to each target. Then our
six possible policies are: allocate 1 missile to each target; allo-
cate 2 missiles to each target;...; allocate 6 missiles to each tar-
get. (Note again that we are ignoring what the missile engineer may
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think of as the primary purpose of these tests, namely, to flnd
hidden bugs in the system. 1In fact, of course, operational tests

are never entirely separate from the development tests -- the purposes
overlap a little -- but the present example restricts our attention
to the operational-testing aspects.)

(2) Measure of Merit

The next step 1s to choose a measure of merit --

a "payoff-function" -- and to calculate its value for each allo-
cation and each "state of nature".* 1In many practical problems

this cholce 1s the most difficult step -- one which requires and
deserves a great deal of careful thought. The techniques of the
analysls are independent of the validity of the cholce of the pay-
off functlon; of course, the usefulness of the result depends cri-
tically on thils cholce.

For our example we have a chosen a measure of merit based
on the 1ldea that we wish to have a high assurance that those targets
actually attacked are destroyed. We choose, therefore, the assurance
level that we desire, and denote 1t by Q. Notice that this assurance
level Q, unlike the confidence coefficlent C, has an explicit opera-
tional signiflicance. We glve ourselves credit for a target destroyed
only if the number of missiles assigned to the target is large enough
to make the probabllity of destructlon of the target at least Q.

Féb this example we make these simplifying assumptions:
first, that the weapon yleld and the missile accuracy are such that a
missile that operates properly (i.e., a "rellable" missile) will reach
the target and destroy it; second, that all targets are of equal value
and we wish to achlieve the same assurance of success Q for each onej
third, that no other weapons are used on these same targets; fourth,

¥A "state of nature" 1s simply a fact about the real world, which may
be considered as a "choice" made by "nature". The concept is useful

when we are dealing with an unknown quantity (such as the reliability
in our example); a value, or range of values of that quantity may be

called a "state of nature".
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that a missile will not damage targets that 1t was not aimed atj
and fifth, that all misslles have the same probability of operating
properly (this probability is denoted by R and is called reliability).

The probabllity that a target will survive an attack
by k missiles, each of reliability R, 1is then

(1 = R)k:

and the probability that it 1s hit by at least one of those k

missiles 1is K
1-(1-R)o

Now, 1i1f we knew R we could simply calculate the smallest k ror
which Kk

l'(l’R) ;Q’
and assign k missiles to each target.

It 1s clear that 1if testing cost nothing, we could test
until (with any desired probability of any desired precision) we knew
the actual value of R, and so could choose the correct value of k
for the actual situation.

We will now show how statistical decision theory helps
us take account of the fact that testing 1s not free. First we draw
up a table showlng the payoff -- the average number of targets killed
per misslle in the stockplle -- under various conditions. This pay-
off 1s of course a function of the number of missiles required per
target (which depends on the "state of nature", or in this case on
the value of the unknown R), and 1s also a function of the number of
misslles actually assigned per target. For example, assume that we
want 90% assurance of target destruction (or, in our notation,

Q = 0.90)3 then, using the condition that 1 - (1 - R)¥ must be at
ileast Q, we can calculate the range of R-values for which 1 missile
is required, 2 missiles are required, etc., and so generate the first
two columns of Table 1.

10
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The lowest value of R in Table 1 18 0.319 because we
assume for this example that the results of the R and D test firings
permit us to ignore the possibility of R being less than 0.319.

The zeroes in the lower left corner of the payoff
matrix result from the assumption that no credit is given for attack-
ing a target with fewer missiles than are required for a probability
Q of destroying the target. The Commander wants to know with 90%
assurance that certain specific targets were killed. To 1llustrate
how the rest of the table 1s constructed we calculate the starred
value in row 2, column 4. We are allocating four missiles to each
target so that each four misslles suffice for one target. The
average 1is 1/4 target per missile, and that number of targets will
in fact be killed with probabili‘y greater than 90%, since two
misslles would have been enough.

The reader may have misgivings about using this particu-
lar payoff function. We think that 1t 1s reasonable; but in any case
i1t will serve as an example of a blased payoff function, since allo-
cating too few missiles is much more costly than allocating too many.

(3) Prior Distribution

Statistical decision theory requires, in addition to
the payoff matrix, a "prior probability distribution on the states
of nature." This must be developed as the consensus of opinion of
the statistician and the executive and should be an attempt to ex-
ploit whatever information and judgment are at hand. In our hypo-
thetical missile-testing example, we might feel fairly certain that
the reliability R lay in a certain range; 1f we could then agree on
an estimate of betting odds for R lying in various 1intervals, and
if we could agree on the general form of the distribution of R, we
could make an estimate of the probability of each interval in the
first column of Table 1, and could compute from those numbers the

11
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probability of requiring various numbers of missiles. That estimated
distribution, based on prior experience, is called the prior (or a
priori) distribution.

The concept of prior probabllity distribution lies at the
center of statistical decislon theory; 1t 1s treated at length in
sections 5 and 6 of this paper.

(4) Preposterior Analysis
Before we perform any experiment, or even decide what
expe-iment to perform, we will make what Raiffa and Schlaifer (ref. &),
call the preposterior analysis. The purpose of that analysls 1s to
evaluate possible experiments. In the course of the analysis we shall
learn how to use the results of the experiments.

Consider for the moment some proposed experiment E, and
some one possible result X of that experiment. (In our example,
choosing the experiment conslsts simply of chooslng the number n
of missiles to be tested, and the result can be expressed by giving
the number m of successful firings out of those n tests.) On the
basis of that result X we will modify our prior distribution in the
following way: each state of nature that would have made the observed
results probable will be considered more likely than before (i.e.,
its posterior probability will be larger than 1its prior probability);..
and each state of nature that would have made the observed results
improbable will be considered less likely than before. (In particular,
any state of nature incompatible with the observed result X will be
excluded from further consideration.)

(a) Bayes' Formula
The above 1deas are made precise by Bayes' formula,
which, in its general form is

P(A.X) = P X AP.XP A ,

13



where P(A) 1s the prior probability of the state of nature A,
P(X) is the prior probablility of observing the result X, and
P(A|x) 18 the posterior probabllity of the state of nature A 1if
the experimental result X has been observed.* The formula can be
interpreted in the following way:

(1) the prior probability P(A) of the state of
nature A is multiplied by the probability P(X|A) of the observed
result occurring if A were true; the resulting number P(A).P(XlA)
measures the relative welght to be given to A 1n the posterior
distribution;

(11) that set of relative weights (one for each state
of nature A) must be divided by their sum, to get a set of welght-
ing-factors (which must add up to unity);

(111)the formula quoted above results as soon as we
remark that the sum of those numbers, for all possible A and some
fixed X, 1s Just P(X); i.e.,

ZA(P(X|A).P(A)) = P(X). **

In our missile-testing example, the state of nature
corresponds tc some value or set of values of the unknown reliability
R, and the test result will be m, the number of missiles (out of
the total of n tested) which were successful. Bayes' formula now
lets us calculate P(AIX), the posterior probability of the state of
nature A after we have performed the experiment E and observed the
test result X.

*The formula can be established by observing that the probability
of the joint event A and X 1s expressible either as P(A).P(X|A) or
as P(X).P(AlX); on equating these expressions and dividing by P(X),
Bayes' formula results.

*#The prior probability P(X) 1s the average (over all states of
nature) of the probability P(X|A) of observing X if A 1is true,
weighted according to the prior distribution P(A).

14



(b) Optimal Terminal Actions

The posterior distribution obtained above represents
our judgment (as modified by the test results) of the plausibility of
the various states of nature. For any one terminal action (i.e., in
our example, for any one allocation policy), we have a set of payoffs,
one for each state of nature; from that set of payoffs we can calcu-
late the expected payoff (using the posterior probabilities on the
states of nature as welghts). Then we may select, for the proposed
experiment E and possible result X, that terminal action which offers
the greatest expected payoff, and record 1t as the optimal terminal
action. We also record the expected value of the corresponding pay-
off.

(c) Expected payoff from an experiment

Conslder now the other possible outcomes of the partici
lar experiment E, and calculate for each of them the optimal terminal
action and the expected value of the corresponding payoff.

When that process has been completed, we must con-
solidate those expected payoffs, which depend on the result X as
well as on E. For this purpose we average them, using the prior pro-
babilities P(X) of the various outcomes as weights, to obtain the over-
all expected payoff of the experiment E.

(d) Comparison of experiments

Now consider the totality of experiments under con-
sideration, and perform the above expected-payoff calculation for
each of them. Assess also the costs of each experiment. If the
costs of the experiment can be expressed 1n the same terms as the
payoffs, then the "design of the experiment" consists only in
choosing that experiment which maximizes the difference (payoff
minus cost). (The word "only" may be misleading, because an enor-
mous amount of calculation may be required in this preposterior

analysis.) If, on the other hand, the payoffs are incommensurable

15
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with the costs of the experiment (e.g., the cost of an experiment 1is
dollars, while the payoff 1s military effectiveness of one kind or
another) it 1s necessary for the statistician to confer with the
decision-maker, and employ the latter's judgment about the operation-
al implication of the various payoffs, to decide which experiment to
perform.*

Note that we have already made the calculations
which tell us which terminal action to take when the experiment 1s
complete and its result has been observed.

(5) Computations for the example.

In Table 2, a possible prior distribution (whose origin
will be described in section 6 below) has been inserted as column
4, Table 2 represents the same situation as Table 1, with two changes:
(a) the range of R, within which two missiles per target are required,
has been divided into two smaller ranges in order to improve the pre-
cision with which later calculations can be made; (b) the midpoints
of the ranges of R have been introduced in order to have a polnt value
for use 1n later calculations.

We consider first the experiment n = 1, in which we test
one missile. (Throughout this example we assume that the test missiles
do not come from the stockpile, so that the number of missiles avail-
able to fire against targets 1s not reduced by the test program.) The
possible outcomes are m = O (no successes, 1.e., the missile fails)

*The concept of cost assoclated with testing may be a much richer con-
cept than the term "cost" ordinarily suggests. Statistical decision
theory permits it to include not only the dollar cost of productlon

of test missiles, but also, for example, as negative costs, the advan-
tages accruing from keeping production lines operating and from the
crew training and experience which result from test firing. Insofar
as this enrichment adds incommensurable elements to the cost, making
cost a vector instead of a scalar, it complicates the later choice of
an experiment, but the principles of the statistical theory are not
affected.

17



TABLE 3
Calculation of P(xz

State of Prior P(x|a)
Nature Probability Conditional P(XIA) .P(A)
A P(A) Probabllity
of Success

1 .210 .950 .199
2 322 .850 2Th
3 .276 JT42 .205
i .161 .610 .098
5 .024 487 .012
6 .005 40k .002
7 .002 34y .001

Total: .791 = P(X),




and m = 1 (one success, 1.e,, the missile succeeds.) The posterior
probabilities for m = O or 1 respectiyely are given in the two
columns at the extreme right of Table 2, which are calculated
directly from Bayes' formula (cf. paragraph 4b(4)(a)). For example,
let us calculate the second entry in the last column, Bayes' formula

1s p(a|x) = ELXIA).P(A)

, where the A 1s state of nature No. 2, 0.800

<R <0.899; X 1s the result "the missile succeeds"; P(A) = 0.322 from
column 4 of Table 2; P(X|A) is the probability of X (1i.e., success)
given that R 1s in the specified range, and we take 0,850 as a mid-
range representative value of the reliability, so that P(X|A) = 0.850.
Thus P(X|A).P(A) = 0.850 x 0.322 = 0.274. To calculate P(X) we must
do the same calculations for all values of A, and form the sum as
shown in Table 3, We find that P(X) =§:Ap(x|A).P(A) = 0,791. Then

P(A|X) = P(xé?%aP(A) = ——8?%%%—— = 0,346, as appears in the second

place of the last column, Table 2,

The expected payoff (in targets per missile in stockpile),
for each of the six methods of missile assignment considered, is
shown at the foot of the column corresvonding to that assignment in
Table 2: each value in the row called "Expected Payoff, Test 1,
Fail" 1s obtained by averaging the seven payoffs in the corresponding
column, using the welghting-factors given by the posterior probabili-
ties for m = 0; the values in the row called "Expected Payoff, Test 1,
Succeed" are similarly calculated using the posterior probabilities
form=1,

The maximum value in each row 1s underlined; it happens
to be the value corresponding to "allocate two missiles per target,"
both for the "Fail® row and for the "Succeed" row. The decision-
rule implied by these calculations, i1f we decide to test one missile,
is to allocate two missiles per target, whether the missile succeeds
or not., The overall expected payoff, in case we decide to test one
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missile, 1s to allocate two missiles per target, whether the missile
succeeds or not. The overall expected payoff, in case we decide to
test one missile, is equal to the probability of faillure times the
payoff expected in case of fallure, plus the probability of succesa
times the payoff expected 1n case of success. This 1s the calculation
at the bottom of Table 2; since, as shown in Table 3, the overall pro-~-
bability of success is 0.791, the overall probability of failure must
be 0.209, and the expected payoff 1s 0.404 targets per missile.

Naturally, we include in the set of "experiments"
to be consldered the case where we do no testing. This 1s the case
n =0 (test no missiles), and the posterior distribution is of course
identical with the prior distribution. The expected payoff for each
method of allocation, if we take n = 0, 18 glven in the row of Table
2 labeled "Expected Payoff, No Testing." Each of these values was ob-
talned by averaging the payoffs 1in the corresponding column, using
in this case the prior probabilitles as weights. Again, the maximum
value would have been obtained when two missiles were allocated per
target, and the expected payoff would have been 0.404. We see that
testing one missile would not increase the expected number of targets
killed per missile. This 1s not surprising when we realize that we
would take the same action (allocate two missiles) for each of the two
possible outcomes of the single test; since no possible outcome of the
experiment would affect our action, the test is not worth doing. (Of
course, such a test might affect other actlions not considered in the
model, and it might be worth doing for those other reasons.)

We may make similar calculations to decide whether
we wish to test more than one missile. For example, Table 4 shows
the calculations for the proposal to take n = 2, (1.e., to test two
missiles.) The expected payoff is then 0.408 targets per missile in-
stead of 0.404, 1If 20 missliles are tested (the calculations are not
exhibited in this paper) the expected payoff is 0.480 targets per
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stockplle missile. If 40 are tested, the expeated payoff is 0.512
targets per missile. (For example, with a stockpile of 300 missiles,
we find that testing two missiles increases the number of targets
killed from 121 to 122, testing 20 missiles increas s the number of
targets killed to 144, and testing 40 increases it to 154.) This
information is summarized in Figure 3, page 34.

The results of calculations of this type, as pre-
sented in Figure 3, furnish the data needed to make a decision on
how many missiles to test. However, the use of data of this kind to
decide how many missiles to test may require military, political, and
economic judgment. The statisticlan, as such, is not qualified to
make the decislon; although his advice should be given when asked for,
the final decislon should not be his.

(6) Employment of the Computational Results

Our exposition so far has shown how information from
missile testing can be used to increase the number of targets des-
troyed by a given missile force. The choice of the number of misslles
to test would appear to require simply a comparison of the cost of
testing and the value of the extra targets destroyed. But a direct
comparison of these two variables can only be made when they are both
measurable in a common unit (such as dollars). We first give in
paragraph 4.b.(6)(a) an example showing how the choice 1s made when
such a common unit does not exist; then the example of paragraph
4L.b.(6)(b) 1llustrates how to use such a common unit, in case it does
exist.

(a) In the present section we show how the choice may be
made without an explicitly stated common unit of measurement for cost
of missiles tested and value of targets destroyed.

The essence of the method is a liberal application
of intuition and Jjudgment to numbers of the kind presented in Table 5,
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which are prepared by the statistician. The intuition and Jjudgment
are furnished by the executive, who examines the rows that correspond
to possible stockpiles -- Jjust one row if he knows what the stockpile
is or will be. Let us assume that the stockpile is firmly established
at 300 missiles. The executive examines the number of targets killed
in the 300-missile stockpile row, noticing, for example, that the
first 10 missiles tested buy 12 extra targets destroyed (fram 121 to
133) and that ten missiles tested after 40 have already been tested
buy only three extra targets destroyed (from 154 to 157).

In some tactical situatlions an extra three targets des-
troyed may be very important. If the executive predicts that this
is the situation he will be faced with, he may decide to test 50
missiles. On the other hand, he may feel that the 150 targets killed

TABLE

No. of Msls :

tested ) 0 10 20 30 40 50
Msl
Stockplile
100 40 45 48 50 51 52
200 1 81 89 95 100 102 104
200 121 133 144 150 154 157
400 162 178 191 200 205 209
500 202 223 239 250 256 261
23
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with 30 missiles tested 18 the right place to operate, since the
extra four targets killed by increasing from 30 to 40 missiles tested
are not sufficiently important to justify the cost of testing 10
missiles, If the actual stockpile 1is not firmly established,
possible stockpiles are examined just as the 300 stockpile was
examined; the choice of number of missiles to test 1s made by sub-
Jective weighting of the cholces for each stockplle.

Of course, analysis of this kind implicitly involves
a common unit for measuring cost of misslles tested and value of tar-
gets destroyed. Nevertheless, a rational executive may find this
method of decision more congenlal than one which requires him to be-
gin by making an expliclit assignment of a dollar value to targets des-
troyed.

(b) PFor this second example, we assume that the cost
and value data can be expressed in a common unit. Specifically, we
assume that the cost of testing n missiles is simply nC dollars,
where C 1s the cost of testing one missile, and that the value of
attacking one additional target can be expressed in monetary terms
as KC dollars, where K is some factor (presumably greater than 1)
which we must estimate. For example, i1f the value of attacking one
additional target was considered equal to the cost of a test missile,
we would assign the value of K = 1; if the value of attacking an
additional target was considered to be ten times the cost of a test
missile, we would assign the value of K = 10, Believing that a
target attacked 1s worth much more to us than the cost of the missile
attacking 1t, we may feel that K should be between 1 and 10,

Denote by T(n) the average number of targets struck
per misslle, if we test n and make the optimal allocation; a graph
of T(n) against n is given in Figure 3. Then the total number of
targets attacked, if we have a stockpile of S missiles and test n
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missiles, is ST(n), and the value to us of attacking these targets,
at KC dollars per target, 1s KCST(n). The cost of testing n
missiles 18 nC, so we wish to maximize the difference KCST(n) - nC,
which equals KCS(T(n) - Kg ). This will be maximized when the curve
T(n), plotted as a function of n as in Figure 3, (page 34), has
slope (KS)~!. Tangent lines are drawn on Figure 3 with slopes

l1, 1, and 1 ,showing that:
100 2% 1000

for KS = 100 -- either K = 1 and a stockpile of
100 missiles, or K = 10 and a stockpile of 10
missliles -- we should do no testing;

for KS = 234 1t 18 a matter of indifference
whether or not we do any testing, but if we do
test we should test about 11 misslles; and

for KS = 1000, we should test about 44 missiles,

If we take K = 3 for example, we show in Table 6
how the nunber tested depends on the stockplile S. In this case a
stockplle of 300 missiles would imply that we should test 40 missiles.

TABLE 6
S, n,
Number of Missiles Number of Missiles
in Operational Stockplle to be tested
<78 0
78 0 or 11

100 15
120 18
150 22
200 29
300 40
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5. Another Objection
The key to the procedure that we have expounded above 1is the
assignment of a prior distribution to the states of nature.

a. Thé strongest argument against the procedure is that the
concept of a prior distribution of a parameter (in our example, R)
is loglcally meaningless; 1t can be argued that R 1s not a random
variable, but a fixed (though unknown) value. This question, which
really concerns the foundations and philosophy of probabllity theory,
has not received, and probably never will receive, universally
accepted answers., Nevertheless, some counter-arguments can be made:

(1) First, for classical statlstics to be useful at all, one
must in some way welght the possible states of nature. Furthermore,
the implicit welighting which characterizes most applications of
classical statlistics 1s subject to the same logical objections as
Bayesian statistics, but falls to y’ecld any of the benefits of the
Bayesian methods, For example, one decides abtout the alternatives
among which one 1s golng to choose, and one thereby completely

excludes from formal conslideration a host of imaginable alternatives.

As another example, 1n setting up an unblased estimator as a desirable
type (as 1s normally done in classical applications) one is implicitly
assuming that the expected cost of an error in one direction 1s equal
to the expected cost of an error in the other direction -- which can
only be true for one ratio of the relative probabilities. Calling

the prior distribution on the states of nature a weighting-function
(which might be subjective), rather than a probability distribution,
is permissible (since both satisfy the postulates of probability
theory) if that soothes the consclence of the loglcal objector.

(2) Second, any statement of probability can be regarded as
an expression of ignorance, Before we fllp a coin, most people will
permit us to say that the probability of a head is 1/2 (or perhaps
some other number near 1/2). After the coin has been flipped, but
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before we have seen it, the probabllity of a head is surely either
1 (1f 1t 18 a head) or O (if it is a tail), However, it may not be
wholly unreasonable to maintain that the (subjective) probability,
until we obtain some informatlion about the result, should be con-
sidered 1/2. Setting a prior distribution on a fact (namely, the
actual but unknown value of R) seems to be similar in spirit.

(3) Third, modern physics forces us to admit the possibility
that length, position, velocity, etc., are primarily probability
distributions, which only superficially appear to be definite values,
rather than the converse. And the relliability of a missile, or the
truth of a hypothesis, can hardly be considered more concrete and
deterministic than the position of a particle,

b. Another difficulty, even if one admits that the concept of
a prior distribution can be meaningful, is that the determination
of such a distributlion may be arbitrary, subjective, and unscientific.
Several remarks must be made in answer:

(1) First, it may happen that the prior distribution actually
has little or no effect on the decisions we make. In our missile-
testing example, the influence of the prior distribution on our
allocation of m*ssiles will be less important if large numbers of
missiles are tested; then prior distributions that appear very differ-
ent may lead to decisions that are very similar.

(2) Second, the existence of a power known as "Judgment" shows
that subjective opinions need not be arbitrary and may be sclentific,
Such opinions may be based on a body of facts and experience which
are valid even though we cannot quote them explicitly.

(3) Third, if it is true (as we maintain) that one cannot
draw any conclusions from an experiment without some prior assumptions,
then the difficulty of making good prior assumptions is regrettable
but irrelevant. For example, Occam's Razor ("Prefer the simplest
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hypothesis consistent with the facte") can be regarded as a prejudice
in favor of simple physical laws; and modern science could hardly
exist without that unscientific preJjudice,

(4) Finally, almost any experiment must be incomplete in
the sense that its subfect is connected to other questions, on
which experiments might also be performed. To make a problem
finite, we must ignore many of those connections., However, the
posterior distributions which resulted from experiments previously
performed may influence (or even determine) the prior distribution
for the present experiment -- and the posterior dlstribution of the
precsent experiment may influence the prior distribution for subse-
quent experiments. (In other words, a parameter estimated by one
experimenter should be used by later experimenters with due regard
to the varlability of the estimate). If the result of any particular
experiment 1s very surprising, we may be forced to retract our prior
distribution, saying, "This i1s a paradox". When the paradox has
been explained, a quite different prior distribution may be postu-
lated for the next experiment; 1f the results of this new experiment
are then within the new expected range, we say, "A new theory has
been confirmed".

6. A Practical Problem

If we accept the principle of a prior probability distribution,
we are left with the practical problem of estimating its numerical
values, This 1s never easy, but frequently one can choose the
general form of the distribution from first principles, and employ
what knowledge we have to estimate the actual distribution.

For example, the numbers given in column 3 of Table 2 were ob-
tained in five steps. First, we assumed that a binomial distribution
with some (unspecified) mean would give a distribution of the right
general shape. Second, we assumed that R, the reliability, was not
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less than 0,32 -- 1.e., we assumed that not more than 6 missiles
would be required to give 90% assurance of a kill, Third, on the
basis of hypothetical research and development tests, aided by
opinioﬁs on the effects of the changes made during development,

we guessed that R looked like 0.8 or so., Fourth, a binomial
distribution with mean 0.8 was selected which gave a reasonable
spread of values for R; we actually chose the binomial distribution
of 10 trials, Fifth, we drew a smooth curve through the points
representing that distribution, as shown in Figure 2, and drew verti-
cal lines separating the ranges of R in which 1, 2, ..., 6, missiles
were required. Sixth, by integrating the various regions under the
curve, we estimated the probability of R lying in each of the ranges
considered. Those prior probabilities were given in column > of
Table 2,

7. Summary
We see that the Bayeslian approach has done the following for
us:

a, It has vermitted a direct comparison of tangible, understand-
able values 10 declde whether testing pays, and to permit us to
choose the number to test. (As discussed in paragraph 4c and foot-
note, the direct comparlson may nevertheless involve a high order
of Jjudgment).

b. For whatever number we declde to test, it tells us explicitly
how to use the test results to allocate missiles to targets.

c., It permits an experiment, considered as a process for gather-
ing information, to be regarded from a unified viewpoint. Instead
of beginning in a vacuum (with no information about the objects under
test) and ending with a confidence-interval (whose interpretation
in practical terms 1s very difficult), we begin with opinions (in
the form of the prior distribution) as to the relative likelihood

*See Page 33, *
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of the various possibilities, and end up with modified opinions

(in the form of the posterior distribution) on those likelihoods.
This makes it much more reasonable to split up a complex set of
experiments intoc sub-experiments, using the posterior distribution
from one experiment as the prior distribution for another, and

makes 1t possible to relate distinct experiments on the same subject
in a consistent way.

If the possible number of missiies one might test is

large, hand cal~ulations of the kind presented in our examples for
n=0, 1, and 2, would be very arduous. Two alternatives are avall-
able: for some payoff furctions and some prior probabllity distri-
butions, closed-form solutlions (formulae for qulckly calculating
the answers) can be ob*alred; when closed-form solutions are not
pcssible the numerizal results may be generated on a high-speed
computer., Research on the former attack 1s golng forward at Stanford
University and the University of Chi:ago under AFCOA sponsorship.
In addition, a program for the IBM 70GC ras been written at AFCOA
which permits a wide :holze of prior distributions, and which cal-
culates the payoff 1n a:cordini:e with the methods of thls example.
A subsequent OA paper w!11l cdes.x1be the program in detail.

3. Con:lusion

It 18 our opinion that the informaticn for applying statistical
decislon theory, 1lr.cluding a prior distribution, can often be esti-
mated and made avallable., In many practi:zal cases, more operation-
ally meaningful results can be obtalined by using statistical decision
theory than by using the classlzal statistical estimation theory.
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